

CyVital Final Design Document

SD-May25 Group 22

Meng Lu

Sajan Patel, Jay Patel, Chuck Mallek, Ty Beresford, Daniel

Karpov

 sdmay25-22@iastate.edu

https://sdmay25-22.sd.ece.iastate.edu/

https://sdmay25-22.sd.ece.iastate.edu/

Executive Summary
Cy-Vital addresses the limited access to affordable, effective biomedical

education tools at Iowa State. BME 3500 is a brand new course at Iowa State. BME

3500 students require hands-on experience with biomedical signals. Existing

training systems are often prohibitively expensive and outdated, leaving students

without adequate hands-on experience using real-world biomedical devices. We

aim to fix these problems and allow Cy-vital to give students the experience they

need to be successful in the biomedical world. The key design requirements for

Cy-Vital include accurate data acquisition from physiological sensors, real-time

data visualization, and modularity to allow seamless integration of various sensors.

The system must be user-friendly and follow the educational objectives.

The design integrates three main components:

1. Data Acquisition Unit (DAQ): Converts analog signals from sensors into

digital data and transmits it to a computer.

2. Physiological Sensors: ECG, Pulse oximeter, and EMG sensors to measure

heart rate, blood O2 levels, and muscle response.

3. Graphical User Interface (GUI): Displays real-time data, enabling

students to analyze physiological signals interactively.

The system employs technologies like Python for GUI development, Analog

Discovery 3 DAQ, and digital filtering for noise reduction. This modular approach

allows scalability and ease of use for students and instructors. Progress to date

includes successful testing of ECG sensors, initial DAQ integration, and a

functional Python-based program to display data. We have prototyped a GUI and

implemented basic signal-processing algorithms. Challenges, such as ensuring

clean signal acquisition and constant ground connection, are constantly

considered. As students, we have a unique perspective as one of our users will be

other students. This allows us to develop the product with the student user in

mind and make sure that we adhere to this user. We are building a foundation with

the base software that will allow us to implement convenient user interaction with

the other two users.

The next steps involve refining the GUI, improving signal processing

algorithms, and integrating additional sensors. The team will also focus on

system-level testing and user feedback to enhance functionality and ensure the

platform meets educational objectives.

Learning Summary

DEVELOPMENT STANDARDS & PRACTICES USED
- IEEE 1073.4.1a-1999 - IEEE Standard for Medical Device Communications -

Physical Layer Interface - Cable Connected

- This IEEE standard describes a physical interface for the

interconnection of computers and medical devices. The physical and

electrical characteristics of the connector and signals necessary to

exchange digital information between cable-connected medical

devices and host computer systems are specified for this standard.

This standard was implemented for all analog and digital sensor data

communication and data collection.

- IEEE 1228-1994 - IEEE Standard for Software Safety Plans

- This IEEE standard specifies the acceptable requirements for the

content of a software safety plan. This pertains to software safety

plans for the development and maintenance of critical safety

software. This standard requires that the plan be prepared in the

context of system safety. This standard was used in practice during

code reviews and design standards to ensure that all safety critical

software components were tested to ensure and maintain an

acceptable level of safety.

- IEEE 1016-1998 - IEEE Recommended Practice for Software Design

Descriptions

- This IEEE standard describes the part of the software design

descriptions (SDDs). An SDD is a representation of the software

system that is used as the main medium for communication. This is

applicable to paper documents, databases, design description

languages, or other means. This standard was applied when

documenting our software functionality and design.

SUMMARY OF REQUIREMENTS

- Each sensor method must be implemented and integrated onto the main
circuit board

- Sensor analysis software must be written in a language familiar to the BME
students prior to BME 3500

- A graphical interface must be developed to allow students to collect data
and analyze output plots from their signal processing functions

- A lab manual must be written to accompany the students to guide them
through the implementation of of each data analysis and signal processing
method for each sensor

APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM

- EE 201, 230
- CPRE 288, 281
- COMS 227, 228, 309

NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES

ADC

Waveforms

I2C

Arduino platform

Soldering

Breadboard basics

Python GUI integration

Software API

TABLE OF CONTENTS
1. Introduction 7

1.1 PROBLEM STATEMENT 7
1.2 INTENDED USERS 7

2. Requirements, Constraints, And Standards 12
3. Project Plan 15

3.1 Project Management/Tracking Procedures 15
3.2 Task Decomposition 16
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 16
3.4 Project Timeline/Schedule 19
3.5 Risks and Risk Management/Mitigation 20
3.6 Personnel Effort Requirements 22

4 Design 24
4.1 Design Context 24

4.1.1 Broader Context 24
4.1.2 Prior Work/Solutions 24
4.1.3 Technical Complexity 25

4.2 Design Exploration 25
4.2.2 Ideation 26
4.2.3 Decision-Making and Trade-Off 27

4.3 Final Design 28
4.3.1 Overview 28
4.3.2 Detailed Design and Visual(s) 29
4.3.3 Functionality 34
4.3.4 Areas of Challenge 34

4.4 Technology Considerations 35
5 Testing 36

5.1 Unit Testing 36
5.2 Interface Testing 37
5.3 Integration Testing 37
5.4 System Testing 37
5.5 Regression Testing 38
5.6 Acceptance Testing 38
5.7 User Testing 38
5.8 Results 39

6 Implementation 39
6.1 Design Analysis 42

7 Ethics and Professional Responsibility 44
7.1 Areas of Professional Responsibility/Codes of Ethics 45
7.2 Four Principles 47

8 Conclusions 50

8.1 Summary of Progress 50
9 References 52
10 Appendices 52

Appendix 1 – Operation Manual 52
Appendix 2 – alternative/initial version of design 54
Appendix 3 – Other considerations 55
Appendix 4 – Code 55
Appendix 5 – Team Contract 55

1. INTRODUCTION
1.1 PROBLEM STATEMENT

The current access to affordable and effective healthcare education is very limited.

Most training equipment is thousands of dollars, the software is decades old and

difficult to operate. This creates a disconnect between theory and practice, leaving

students without a solid understanding of how biomedical devices work in

real-world situations. As healthcare technology develops, there is an urgent need

for workers to understand theory as well as have the ability to work with the

equipment to develop new solutions.

Our project, Cy-Vital, addresses this problem by creating a hands-on learning

environment for students studying biomedical engineering. The goal of this project

is to show students how to engage directly with physiological devices such as heart

rate, O2 level, and muscle sensors as well as understand how to read and interpret

the data given to them once they test the sensors on a live volunteer. The broader

issue we aim to address is making affordable and effective tools that allow students

to experiment safely. Without tools like this, students miss valuable opportunities

to explore medical technologies and experience building effective medical devices.

Our project is designed to solve these issues by integrating the physiological

sensors into a single, easy-to-use system. Students will be able to measure, record,

and analyze real-world data using the provided sensors and their own developed

programs. This helps the students gain firsthand experience building basic medical

devices based on the content they learn in lecture. Our projects aim to equip future

biomedical engineers and empower them to innovate in ways that will allow them

to design, engineer, and program medical sensors for analysis using our platform.

1.2 INTENDED USERS

User 1: Biomedical Engineering Students

CyVital has the intention of reducing overall overhead while using physiological

devices and its sensors. CyVital is bridging software between the hardware (the

sensors) and the computer itself. This allows the Biomedical Engineering students

to properly read and analyze data returned by the sensors.

Biomedical Engineering students need to have a proper understanding of statistical

data returned from any physiological sensor, however, it is not their job to navigate

a confusing, outdated existing software. With advancements made in technology

and overall reduced runtimes, it should be expected that the software can properly

conform to today’s standards. However, based on anecdotal evidence, our mentor is

suggesting a cheaper, simpler yet more efficient solution.

The benefits of using CyVital can be categorized as such:

1. The fluidity of the program

a. Color toning

i. Colors are appealing and reveal data in priority

ii. The graphical user interface makes “sense” and does not

obstruct data analysis

b. Increased framerate

i. Reduce bugginess and frame rate drops

1. Impose data caching when possible to reduce data

transfer costs

2. Update libraries to meet new standards

c. Increase overall modularity

i. Remove product-specific cables

1. Replace cables with USB-C to increase overall data

transfer rates and allow for complete plug-and-play

modularity

2. Allow code to be open-sourced so necessary personal

modifications can be made

Despite requiring an absolutely large rewrite of the existing program, the basic

premise of the project remains the same: increase user interaction satisfaction and

decrease overall overhead from existing software.

As part of the learning process, students will be tasked with filling in functions and

methods within the code that powers the interaction with the physiological

sensors (such as heart rate, reaction time, O2, and muscle sensors). These coding

exercises will be designed to be incremental and hands-on, giving students the

opportunity to learn by doing. Here's how the project will encourage students to

engage with the programming aspect:

1. Students will begin by exploring the pre-written code that works with the

sensors. This will give them an idea of how the data is captured and

processed from the sensors.

2. As they work through the code, they will find “gaps” in the methods that are

not yet fully implemented. These gaps will be made to push students to figure

out how to complete the code. For example, a student might need to write a

function that reads data from a heart rate sensor and displays it.

3. Students will run their program on live subjects, which allows them to observe

how their code interacts with the real-world data. The iterative process of

coding and refining, ensure students learn along the way

4. By filling in the code themselves, the students will have to learn the underlying

principles of the medical sensors, data analysis, and sensor calibration. This

approach will help the students get a deeper understanding of how the sensors

work.

User 2: Lab Teaching Assistant

These Lab TAs will be running each lab for the bioengineering students.

The TAs will need to have a great understanding of the software that is being used

as well as how the equipment works. The lab TAs will need to be able to introduce

the lab to the students in a clear and concise manner that would make sense to the

bioengineering students. No lab should also be too hard for the students to do nor

too long for them to complete within the lab time.

Needs Statements:

- Need to be able to give clear and concise instructions

- Need to be able to help with the lab

- Need to be able to do the labs themselves

- Need to be able to troubleshoot sensors

How TAs might derive value from Cy-Vital

- Deepen their understanding on bio-instrumentation

- The TAs will have to be able to help students often with the labs and

this will help solidify/improve their understanding on the topic

- Improve Teaching and communication skills

- The TAs are going to have to guide students through the labs and

help them with any questions they have

- Collaboration

- TAs are going to have to work closely with the professor of the course

in order to choose the best labs week to week and make sure that the

labs align with what is being taught in the lectures.

User 3: Course Professor

 The course professor is responsible for administering and overseeing the

course curriculum and making sure that students are meeting specific learning

objectives needed for the BME course. The professor will have a deep

understanding of the theoretical and practical skills the students need to learn.

Professors will also be in charge of evaluating the effectiveness of the lab,

managing TAs, and guiding students through the course

 Needs statements:

- Needs to make sure lab tools and activities align with course

objectives

- Need the hardware and software solution to be both reliable and

intuitive to use

- Need to be able to easily interpret and grade student data collected

from the labs

 Benefits to the professor:

- The CyVital system is both a hardware and software platform which

allows for a simplified way to conduct student labs

- By using our solution, the professor can focus on teaching the

curriculum rather than troubleshooting and maintaining outdated

and old systems

- Because the CyVital system is developed in house, the cost per unit

will be much cheaper than market solutions.

2. REQUIREMENTS, CONSTRAINTS, AND STANDARDS

2.1 REQUIREMENTS & CONSTRAINTS

Functional Requirements:

1. Sensor Data Acquisition

a. The system can accurately and efficiently read data from various

sensors, whether it is temperature, heart monitor, or blood oxygen

saturation

2. Data Analysis

a. The software, given any specific data set, can observe and deduce

possible readings on output data

3. Data Visualization

a. The system must properly display sanitized collected data, and users

must be able to interact to break down each data type

Educational Requirements:

1. Ease of implementation for students

a. The CyVital software should be in a familiar language for biomedical

students, to ease the learning curve of implementing functions and

methods for completing labs

2. Modularity

a. The project should have an element of modularity. The system

should be designed in such a way that a student could collect data

from any type of analog signal and write a program to analyze the

data.

3. Educational Value

a. The platform should coincide with the learning objectives of the

course curriculum. Implementation of the project should help teach

course concepts in an interactive and practical manner

Resource Requirements:

1. Sensor Compatibility

a. The system must be compatible across different systems, OS, and

potentially different dated sensors

2. Development Tools

a. By utilizing Python, a universal language, consistent modules across

the board will be trivial

Aesthetic Requirements:

1. User Interface Design

a. The UI must be clean and modern, avoiding clutter and

disorganization; users should be able to grasp large data without

losing track of objective

2. Color Scheme

a. The UI needs to blend and approach the color wheel correctly;

clashing colors will make data analysis difficult; data will be

prioritized correctly with color schematics

Performance Constraints:

1. The system must process and display sensor data - any latency of no more

than 2 seconds will be reported

2. The application must securely store data until the user terminates their

account or until data is no longer applicable

3. Modular system: each sensor must be adjustable to match the DAQ as

necessary

2.2 ENGINEERING STANDARDS

- IEEE 1073.4.1a-1999 - IEEE Standard for Medical Device Communications -

Physical Layer Interface - Cable Connected

- This IEEE standard describes a physical interface for the

interconnection of computers and medical devices. The physical and

electrical characteristics of the connector and signals necessary to

exchange digital information between cable-connected medical

devices and host computer systems are specified for this standard.

- IEEE 1228-1994 - IEEE Standard for Software Safety Plans

- This IEEE standard specifies the acceptable requirements for the

content of a software safety plan. This pertains to software safety

plans for the development and maintenance of critical safety

software. This standard requires that the plan be prepared in the

context of system safety.

- IEEE 1016-1998 - IEEE Recommended Practice for Software Design

Descriptions

- This IEEE standard describes the part of the software design

descriptions (SDDs). An SDD is a representation of the software

system that is used as the main medium for communication. This is

applicable to paper documents, databases, design description

languages, or other means.

- IEEE 11073-10101: Nomenclature for vital signs data, which helps standardize

the representation of medical data across devices.

- This IEEE standard provides nomenclature for point of care(POC),

personal health devices(PHD), and medical device

communication(MDC) that supports the domain information model

and service model components. This is specialized for vital signs

such as ECG, respiration, neurology, and more.

3. PROJECT PLAN
3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

For our project our team has chosen to do a Waterfall-Agile hybrid approach. This

style combines the structured beginning phases of the waterfall method while

having the flexibility of the agile development model.

Initial Waterfall phase: The early stages of the Cy-Vital project(requirement

gathering, design, and initial prototyping) need a linear approach for the

groundwork of the project. This phase includes defining the technical

requirements and establishing the needed hardware to work with physiological

sensors. The early foundation is built with this phase and helps make the next

phase much easier

Agile phase: After the initial system components are figured out, we can shift to

an Agile development approach. This approach is a more iterative approach that is

continually evolving in order to refine features, respond to the feedback, and

improve the project overall. This will help us with issues such as signal accuracy

and interference which are adjustments that are ongoing.

The main progress-tracking tool we are going to use is GitHub and weekly team

meetings. GitHub ensures effective collaboration and progress tracking so that we

can see the project grow and evolve from a software perspective. This also helps

with version control, documentation, and code management. All team members

will be able to track changes, pull and push code, and review each other's work,

ensuring quality code is being pushed. While weekly team meetings will ensure

that the project overall is staying on track and we are not veering off or moving too

slowly.

3.2 TASK DECOMPOSITION

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

1. Milestone: Frontend-Backend-Hardware Integration

Description: Achieve a seamless merge between the frontend/backend processing

and hardware components.

Metrics & Evaluation Criteria:

● Complete system integration across all modules, validated through

end-to-end testing.

● Data Acquisition Quality (DAQ): Register DAQ signals with a 20%

improvement in analytics processing speed on software produced by our

team.

● Progress Evaluation: Performance metrics from the DAQ system to

validate the 20% increase.

● Refinement Opportunity: Refine after each sprint iteration to ensure

results across updates.

2. Milestone: Sensor and Lab Module Integration

Description: Complete 4 sensors and their code integration

Metrics & Evaluation Criteria:

● Integration Rate: Current target of 4 lab modules this semester. This is

measured by sensor compatibility, accuracy, and responsiveness.

● Signal Accuracy: Ensure that each sensor measures biological signals with

95% accuracy, verification with calibration tests against baseline data.

● Refinement Opportunity: Address any calibration issues iteratively per

module, applying feedback for each sprint as new modules are integrated.

3. Milestone: BME Lab Kits Creation and Software Release

Description: Develop and release Biomedical Engineering (BME) lab kits

alongside software.

Metrics & Evaluation Criteria:

● Client Satisfaction: Achieve feedback indicating high satisfaction for five

newly created lab modules, measured through surveys or client evaluations.

● Kit Readiness: Ensure that each lab kit meets functionality, durability, and

ease-of-use criteria upon release.

● Refinement Opportunity: Reassess client feedback post-initial release to

address usability or functionality feedback in future versions.

4. Milestone: Signal Processing Performance

Description: Increase the accuracy of our signal processing algorithms for reliable

data accessibility.

Metrics & Evaluation Criteria:

● Signal Processing Accuracy: Achieve 95% accuracy on all biological

signals, validated through repetitive testing.

● Processing Speed: Increase signal processing speed by 15% each sprint,

measured by recording processing times under similar testing conditions.

● Refinement Opportunity: Adjust algorithm parameters and optimize code

with each sprint to meet or exceed speed and accuracy targets.

5. Milestone: User Interface (UI) and User Experience (UX) Evaluation

Description: Evaluate and refine an easy-to-use UI.

Metrics & Evaluation Criteria:

● User Satisfaction Score: Achieve an 85% satisfaction rate in user testing.

Core areas of improvement are usability, clarity, and accessibility.

● Task Completion Time: Decrease average task completion time by 10%,

measured by tracking the average user interaction time.

● Educational Outcomes Met: Ensure the platform achieves and aids in the

course learning objectives defined in the course criteria

● Refinement Opportunity: Adjust UI elements based on user evaluation,

aiming for improved usability and interaction flow.

3.4 PROJECT TIMELINE/SCHEDULE

Semester 1 Gantt chart:

Semester 2 Gantt chart:

Deliverables:

 Working button with sensor: 1/31

 Get working ECG: 3/14

 Rest of the Sensors: 4/11

 Gui for all Modules: 5/2

 Presentations 5/6

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Sensor Malfunction / Data Loss

Risk Description: Sensors may malfunction, leading to inaccurate or incomplete

data capture.

Probability: 0.4, Severity: High

Mitigation Plan:

● Perform regular checks on sensors to ensure data accuracy.

● Explore the purchase of backup sensors or monitoring tools.

Software Bugs / Crashes

Risk Description: Software bugs could cause failures in the sensor interface or

data processing.

Probability: 0.6, Severity: High

Mitigation Plan:

● Conduct unit and integration testing, especially for sensor-related code.

● Regularly update software and utilize version control through Git.

● Schedule code reviews to catch potential issues early.

GitLab Main Branch Nuke

Risk Description: The main branch on GitLab could be accidentally wiped

Probability: 0.05, Severity: High

Mitigation Plan:

● Require all main branch updates to be reviewed via pull requests.

● Use branch protection and continuous backups for recovery.

Meeting Performance Targets

Risk Description: The system may fail to meet specific data speed, accuracy, or reliability

performance metrics.

Probability: 0.5, Severity: Moderate

Mitigation Plan:

● Run simulations on alternative tools or algorithms.

● Benchmark against different hardware or sensors to compare performance.

Tool/Technology Limitations

Risk Description: Tools like SQL Server or GitLab may have limitations impacting

performance or reliability.

Probability: 0.3, Severity: Moderate

Mitigation Plan:

● Regularly assess new versions of tools for relevant feature updates.

● Consider alternative platforms or frameworks if limitations persist.

The only risk that came to pass was sensor malfunctions. We had issues with our original
sensors that were outdated and would not work at all. To fix this issue, we got a newer
version of the same type of sensor, and we were able to get a proper signal.

3.6 PERSONNEL EFFORT REQUIREMENTS

Task Description Team Members

Involved

Estimated

Hours per

Member

Total

Person-Hours

1. Project Planning Define scope, goals, requirements All 4 20

2. Hardware Design &

Setup

Select and assemble sensors, test

compatibility

3 10 30

3. Data Acquisition

System Development

Develop and integrate data

acquisition unit

3 12 36

4. GUI Initial Design Create interface wireframes, basic

functionality

2 8 16

5. GUI Development

& Refinement

Build GUI features (start/stop,

visualization)

2 20 40

6. Signal Processing

& Noise Reduction

Implement filtering for ECG,

EEG, etc.

2 15 30

7. Integration of

Sensors & Data Sync

Synchronize multi-sensor data All 10 50

8. System Testing &

Debugging

Test individual components and

overall integration

All 15 75

9. Documentation &

User Guide

Create documentation and

guides for users

2 10 20

10. Final Testing &

Adjustments

Finalize testing, troubleshoot,

and refine

All 12 60

11. Presentation &

Demo Prep

Prepare for project presentation

and demo

All 8 40

Explanation and Reference:

1. Initial Planning: All members will spend 20 hours defining the project scope,

requirements, goals and creating an initial plan.

2. Design and Development Phases: This includes hardware and software tasks

(2-7), such as signal processing, hardware, and GUI setup. Some processes will take

longer than others because they are more difficult and require more attention.

3. Testing and Documentation: System testing requires all team members so that

there are no errors or missteps in the system. Documentation is also key as it will

provide the user documentation to look at if coming goes wrong or as an

educational tool

4. Presentation and Final Adjustment: These final tasks ensure the project is

polished and well presented for the client.

3.7 Other Resource Requirements

1. Collaboration & Communication Tools

● GitHub: Collaborative work
● Discord: Real-time communication for team meetings
● Google Drive: Usage for note sharing and collaboration

Importance: Enabled seamless coordination

2. Software & Development Tools

● Python Ecosystem: Libraries like NumPy (signal processing), Matplotlib (data
visualization), and dwfpy (Analog Discovery 3 DAQ integration).

● imGui Framework: Graphical user interface.
● WaveForms SDK: Software development kit for Analog Discovery 3.

Importance: Provided the technical backbone for project.

3. Hardware & Testing Tools

● Soldering Equipment: For prototyping sensor circuits and multiplexer
integration.

Importance: Ensured hardware reliability.

4. Expertise & Knowledge Resources

● Faculty Mentorship: Guidance from professors on biomedical signal standards.

Importance: Bridged knowledge gaps.

5. Physical Infrastructure

● Lab Space: Access to soldering stations, testing benches, and sensor calibration
tools.

● Volunteer Test Subjects: For live ECG, EMG, and pulse oximetry data collection.

Importance: Enabled real-world prototyping.

4 DESIGN
4.1 DESIGN CONTEXT

4.1.1 Broader Context

Area Description Examples
Public health,
safety, and
welfare

BME students are afforded the
opportunity to use our system to apply
their learning and develop biomedical
sensors in practice, which better equips
them for work in industry

Reduces cost of lab administration

Allows for interactive approach to
sensor development

Global,
cultural, and
social

This project is designed to improve the
readiness and vocational skills of
prospective biomedicals students before
they begin work in industry

This project improves the
readiness of students and increases
their exposure to ethically sound
engineering development

Economic This project was designed to be as cost
affordable as possible. Many systems
currently on the market have costs that
exceed over 10,000 dollars per kit,
making them prohibitive to use.

Total cost of this project is under
600 dollars, while market
competition can be over 10,000

4.1.2 Prior Work/Solutions

Existing products on the market include BIOPAC, OpenBCI, and BITalino. BIOPAC offers
high-end, expensive physiological monitoring for research purposes. It supports
multi-signal acquisition and a powerful analysis tool. OpenBCI is a notable open-source
alternative with support for EEG, EMG, ECG, and more. The hardware is a bit more
affordable than the BIOPAC. The BITalino platform is another low-cost solution that is for
educational purposes. It provides basic GUI and sensor support.

Our project differentiates itself from the others by taking all the advantages of each and
bringing them together. We are attempting to make an affordable, high-quality,
open-source biosignal acquisition system. While others have one or two of these, we plan
to implement all of these features.

[1] BIOPAC Systems Inc., “BIOPAC Student Lab,” [Online]. Available:
https://www.biopac.com/product/bsl-pro/.

[2] OpenBCI, “OpenBCI: Biosensing for Everyone,” [Online]. Available:
https://www.openbci.com/.

[3] H. da Silva et al., “BITalino: A novel hardware framework for physiological computing,”
Proc. ACM Int. Joint Conf. Pervasive and Ubiquitous Computing Adjunct Publication, 2014,
pp. 479–482. DOI: 10.1145/2638728.2641693.

4.1.3 Technical Complexity

Provide evidence that your project is of sufficient technical complexity. Use the
following metric or argue for one of your own. Justify your statements (e.g., list the
components/subsystems and describe the applicable scientific, mathematical, or
engineering principles)

1. The design consists of multiple components/subsystems that each utilize
distinct scientific, mathematical, or engineering principles –AND–

2. The problem scope contains multiple challenging requirements that match
or exceed current solutions or industry standards.

https://www.biopac.com/product/bsl-pro/
https://www.openbci.com/
https://www.openbci.com/

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

The following key design decisions were made to balance technical feasibility, educational
value, and cost-effectiveness:

1. Python with Minimal External Libraries
○ Rationale: Python was selected as the primary programming

language due to its widespread adoption in biomedical engineering
curricula. By minimizing external dependencies, students can focus
on core signal processing concepts without struggling with complex
library setups. This aligns with the requirement for modularity and
accessibility.

○ Trade-off: While Python’s slower execution speed compared to C++ or
Java was noted, its simplicity and educational value outweighed
performance concerns for this application.

2. 16:1 Multiplexer for Sensor Integration
○ Rationale: A 16-channel multiplexer was chosen to accommodate

future scalability (currently supporting 4 sensors). This allows
students to add new sensors without redesigning the hardware.

○ Trade-off: Increased circuit complexity was accepted to prioritize
modularity and long-term flexibility.

3. Analog Discovery 3 (AD3) DAQ
○ Rationale: The AD3 replaced earlier MCC and AD2 hardware due to

its USB-C connectivity, higher sampling rates (up to 15 MHz), and
compatibility with modern systems. Its built-in oscilloscope and
signal generator functionalities simplified prototyping.

○ Trade-off: Transitioning hardware mid-project introduced delays but
ensured compatibility with future lab environments.

4. Open-Source GUI Framework (IMGUI)
○ Rationale: After testing Tkinter and PyGUI, IMGUI was selected for

its high frame rate and dockable windows, which improve real-time

data visualization. Open-source licensing allows customization by
students.

○ Trade-off: IMGUI’s steeper learning curve was mitigated through
pre-built templates.

4.2.2 Ideation

For selecting the data acquisition unit, we considered multiple ideation techniques

and reviewed various options through brainstorming and feature-mapping to

balance connectivity, data transfer speed, and power consumption. Options

considered included:

1. USB Wired Connection

○ A stable connection with low latency, widely accessible, and

convenient for classroom settings

2. Bluetooth

○ Wireless, flexible, and easy to use; but can introduce latency and

signal interference.

3. Wi-Fi Module

○ Offers long-range connectivity but might be affected by network

congestion and can add latency

4. Ethernet Wired Connection

○ Stable with low latency, but limited because it is not widely

accessible to all computers, which might hinder setup flexibility

5. Radio Frequency (RF) Module

○ This offers low power consumption and reduced interference, but

lacks the bandwidth needed for the high-frequency data used in the

physiological sensors

4.2.3 Decision-Making and Trade-Off

We used a weighted decision matrix to compare each option based on key criteria:

latency, data transfer rate, setup complexity, and reliability. The table below

outlines the scoring system used, with higher scores indicating greater suitability

and all scores are out of 10

Option Latency Data Transfer Rate Setup Complexity

/ Availability

Reliabilit

y

Total

USB Wired 9 8 8 9 34

Bluetooth 6 6 8 5 25

Wi-Fi Module 7 7 6 6 26

Ethernet 9 8 5 9 31

RF module 5 5 9 7 26

Decision Summary

● Chosen Option: USB Wired Connection

● Reasoning: USB scored highest due to its low latency, consistent data

transfer rate, and high reliability in a lab setting. The direct connection also

simplifies setup. Although Ethernet had similar benefits, the USB

connection was chosen for its ease of use and availability, making it more

suitable for classroom environments where flexibility is key.

4.3 FINAL DESIGN

4.3.1 Overview

CyVital is a hands-on educational tool designed to help students learn about how

the body’s signals (like heart rate, brain activity, and muscle movements) are

collected and analyzed. It has three main parts:

1. Data Acquisition Unit: This is the central hub. It collects signals from

sensors attached to the body and sends them to the computer in real time.

2. Physiological Sensors: These are small devices that detect signals from the

body. We sourced each of our sensors from SparkFun, including:

○ The SparkFun AD8232 ECG sensor

○ The SparkFun MyoWare Muscle sensor

○ The SparkFun MAX30101 photodetector for Blood Oximetry

i. (Note: this sensor requires I2c configuration that must be

setup using the dwfpy library in order to work)

○ iworx Reaction Time button

3. GUI Software (Graphical User Interface): On the computer, this software

shows the signals in real-time, so users can see their heart rate, brain waves,

or muscle activity as it happens. The GUI should be designed to allow

students to select a specific module and run their signal processing

implementation.

Together, these parts help students interact with real physiological data, giving

them an understanding of how medical and health-related data is gathered and

visualized.

4.3.2 Detailed Design and Visual(s)

High-Level System Design

The CyVital system is organized into three interconnected subsystems:

1. Data Acquisition Unit (DAQ):

Figure 1. [1] Digilent, “Analog Discovery 3 – Getting Started,” Digilent Reference.

[Online]. Available:

https://digilent.com/reference/test-and-measurement/analog-discovery-3/start.

[Accessed: Apr. 14, 2025].

○ This unit receives raw signals from each sensor, which are analog,

and converts them to digital form using an Analog-to-Digital

Converter (ADC).

○ Key Components: ADC for signal conversion, microcontroller for

data handling, wireless module for communication, USB-C

connection, configurable power supply.

2. Physiological Sensors:

○ Each sensor captures specific physiological data:

■ Reaction Time: Records the reaction time after pressed.

■ ECG Sensor: Measures the electrical activity of the heart.

Figure [2] SparkFun Electronics, “SparkFun Single Lead Heart Rate Monitor –

AD8232,” SparkFun. [Online]. Available:

https://www.sparkfun.com/sparkfun-single-lead-heart-rate-monitor-ad8232.html.

[Accessed: Apr. 14, 2025].

■ Photodetector Pulse Oximeter Sensor: detects oxygen level

by measuring the amount of light absorbed through skin.

Figure [3] SparkFun Electronics, “SparkFun Photodetector Breakout – MAX30101

Qwiic,” SparkFun. [Online]. Available:

https://www.sparkfun.com/sparkfun-photodetector-breakout-max30101-qwiic.html

. [Accessed: Apr. 14, 2025].

■ EMG Sensor: Measures muscle response.

Figure [4] SparkFun Electronics, “MyoWare Muscle Sensor Kit – SparkFun Learn,”

SparkFun Learn. [Online]. Available:

https://learn.sparkfun.com/tutorials/myoware-muscle-sensor-kit/all. [Accessed:

Apr. 14, 2025].

○ The sensors are connected to the DAQ, where their signals are

processed and sent to the software.

3. GUI Software:

○ This software receives data from the DAQ and displays it on the

computer screen (imGui - Python Bindings:

https://pyimgui.readthedocs.io/en/latest/#).

○ It features adjustable settings for data analysis (e.g., viewing data

over different time intervals).

○ Users can interact with the data, zoom in, and apply basic filters to

understand different signal patterns.

Sub-System Details and Visuals

Each subsystem is modular, with clear wiring and connection interfaces:

● Data Flow Diagram: A block diagram shows the flow of data from sensors

to the DAQ, which processes it and sends it to the GUI software for display.

● Circuit Diagrams: The DAQ circuit diagram includes the Analog Discovery

3, microcontroller, and sensor units.

● GUI Wireframe: A GUI mockup shows how data from each sensor appears

on the computer screen, with labeled graphs and controls for settings.

The descriptions of each subsystem, wiring, and software protocols make the

design easy for another engineer to replicate or modify as needed.

4.3.3 Functionality

In a classroom or lab setting, a student uses CyVital by connecting sensors to their

body (for example, placing the ECG sensor on their chest to measure heart rate).

Once connected:

1. The System Starts: The DAQ collects signals from each sensor and

transmits them to the GUI software on a computer.

2. Data Display: The GUI software immediately shows real-time graphs for

each sensor (heart rate, brain waves, etc.).

3. User Interaction: Students can adjust settings on the GUI, such as viewing

data over different time frames or focusing on specific data (e.g., zooming in

on a muscle movement spike). Students will be charged with implementing

data analysis functions and signal processing methods for each sensor. The

plotting is handled via matplotlib.

This real-time interaction helps students see and understand physiological signals

and how these signals are processed in medical and research settings.

4.3.4 Areas of Challenge

Satisfaction to Satisfy requirements

1. Easy to use GUI: An easy to use interface was made for all the users to be

able to use the program without having to follow a guide on how to use it.

2. Straightforward lab modules: Straightforward lab modules mean that the

student users are able to use this program easily and are able to focus on

learning the material rather than trying to get the lab done.

3. Data acquisition is accurate: Accurate data acquisition is important for

the users because it will allow for the users to use the program at maximum

potential.

Primary Challenge:

Our primary challenge was having different users be able to see data from different

users. For example, we need the lab student lab results be shown for the TA users

so they are able to grade / help. We also need the Course instructor user to be able

to access the data if needed.

Solution:

We’ve developed a few immediate solutions to this problem. As with the lab

portion of CPRE 2880, students are able to perform a live demo of their functions

as well as having export data directly from the matplotlib graph as part of their

submission criteria

4.4 TECHNOLOGY CONSIDERATIONS

1. USB-C DAQ:

Strength: Using USB-C allows for higher data transfer rates with low

latency. USB-C is also a standard connector, which allows for future devices

to connect to the unit

Weakness: creating USB-C sensors adds overall complexity to our project

and requires implementation based strictly on USB-C connection standards

Trade-offs: We prioritize data transfer speeds and latency over

development complexity in our design

2. Python GUI:

Strength: Easy integration with standard data analysis

 libraries(numpy,Matplotlib, etc…) and visualizable real-time data plotting

 for BME students.

Weakness: Python may be slower than C++ or Java for large datasets or

 high-frequency inputs. Performance limitations could be noticeable if

 processing very large data loads.

Trade-offs: Prioritized simplicity, educational accessibility, and ease of

 modification. Python’s accessibility for students outweighs performance

 concerns that might arise in an educational context.

3. Digital Filtering Techniques for Signal Processing:

Strengths: Effective in removing noise from ECG, EMG, and

Pulse-Oximeter signals, making the data clearer and easier for students to

analyze.

Weaknesses: Digital filters may introduce minor processing delays, and

tuning them requires specific knowledge of signal processing.

Trade-offs: Choose digital filtering over analog filtering for flexibility.

Digital filters can be adjusted and improved within python scripts to fit with

educational needs.

5 TESTING
Our testing strategy is to test any and every change that we make. We aim to test all edge
cases and make sure that they are accounted for. This is needed to ensure that our product
conforms to our client's specifications while thoroughly targeting all areas with expected
certainty.

5.1 UNIT TESTING

● What is being tested:
○ Individual sensors (e.g., EMG, ECG, O2).
○ Data processing algorithms.
○ GUI components (button responsiveness, data visualization accuracy).

● How:
○ Example data sets for sensors to validate signal acquisition and accuracy.
○ Automated tests for backend algorithms using test datasets.
○ GUI testing for responsiveness and functionality.

● Tools:
○ Python unittest and pytest.
○ Pre-released data analysis software for sensor testing

5.2 INTERFACE TESTING

● Interfaces being tested:
○ Sensor-to-hardware communication (DAQ and audio port).
○ Hardware-to-software integration for data transfer.
○ User interaction through the GUI.

● How:
○ Data sets for sensor input to test GUI responsiveness.
○ Ensure data integrity during transfer between modules.

● Tools:
○ Logic analyzers for hardware communication validation.
○ Python integration tests.
○ GUI testing frameworks

5.3 INTEGRATION TESTING

● Critical integration paths:
○ Sensor hardware → DAQ → Backend processing → GUI visualization.
○ Backend algorithms → Data storage and retrieval.

● How:

○ Simulate real-world scenarios to ensure data flows correctly.
○ Validate time synchronization between hardware and software.

● Tools:
○ End-to-end testing scripts.
○ Performance monitoring tools

5.4 SYSTEM TESTING

● System-level testing strategy:
○ Combine unit, interface, and integration tests to validate overall

functionality.
○ Test the system with live sensor data to ensure real-time operation.

● Tools:
○ Physical sensors are connected to the system for live testing.
○ Data visualization tools for analyzing results.
○ Debugging tools for identifying errors.

5.5 REGRESSION TESTING

● Ensuring stability:
○ Validate that new features (e.g., adding a new sensor) do not disrupt

existing functionalities.
● Critical features to monitor:

○ Data acquisition from sensors.
○ Backend data analysis.
○ GUI responsiveness.

● Tools:
○ Version control (GitHub) for continuous integration testing.

5.6 ACCEPTANCE TESTING

● Demonstrating requirements are met:
○ Conduct live demonstrations using physiological sensors with predefined

scenarios.
○ Involve the client in reviewing data accuracy, GUI usability, and overall

performance.
● Involving the client:

○ Provide real-time testing sessions with detailed reports.
○ Collect client feedback on usability and accuracy.

5.7 USER TESTING
How did you test whether your design addresses user needs? How did you involve your
users? What were their reactions? What were your observations of users interacting with
your design?

● How we tested for user needs
○ We had a couple of test subjects complete a test lab manual.
○ The manual makes the user go through all the features of Cy-Vital
○ We took notes on the process and made the user fill out an experience

survey
● User Reactions:

○ Users typically describe our GUI as simple and intuitive when switching
between sensors.

○ Ensure data integrity during transfer between modules.
● Observations:

○ Users often tried to change raw signal filters without understanding what it
would do. This led us to take out the ability to change these settings as it
makes the program more complicated.

5.8 RESULTS
● Accuracy & Reliability ― All sensors met or exceeded the accuracy target. No

data‑loss events were recorded during stress testing.

● Performance ― Real‑time processing kept total pipeline latency under a
reasonable time requirement, ensuring responsive biofeedback.

● User Satisfaction ― Test participants consistently described the interface as
“simple” and “intuitive,” validating the design changes that removed direct filter
manipulation.

Compliance Statement

All verified results demonstrate that Cy‑Vital conforms to the client’s specifications for
data integrity, real‑time performance, and usability. The system is ready for final hand‑off
and deployment in the BME 3500 teaching labs.

6 IMPLEMENTATION

Currently, our implementation is focused on establishing the essential functionalities of
the system. Below, we outline the progress made in implementing the key components:
physiological signal processing, data acquisition, signal processing, and circuit
integration.

1. Biological Signals

We have begun working on the following sensors:

● Electrocardiogram (ECG): Captures electrical activity of the heart.
● Electromyogram (EMG): Monitors electrical activity in muscles.
● Pulse Oximeter: Measures oxygen saturation levels.
● Reaction Time: This measures how fast user can react

Each of these sensors captures analog signals that require digital conversion for software
processing. This step involves ensuring minimal noise and distortion during the signal
capture phase, which is critical for accurate analysis.

Multiplexer Integration: Implemented a 16-1 multiplexer for switching between each of
the 4 sensors and making the GUI able to switch easily between the sensors (whilst
maintaining all backend requirements– handling context changes between sensors, ect.).

2. Data Acquisition

The data acquisition system bridges the gap between sensors and the software interface.
Current progress includes:

● Configuring sampling rates to meet the requirements of real-time data analysis
while preserving signal integrity.

● Testing sensor connections to ensure compatibility and robustness under various
conditions.

This DAQ system ensures accurate, reliable, and synchronized data input for the signal
processing module.

I2C connection: Established I2C sensor communication for Pulse Oximeter sensor. This is
because the sensor works with this connection. Adjusted software and hardware to meet
connection requirements.

3. Signal Processing

Our implementation of the signal processing module includes:

● Filtering Techniques: Preliminary application of low-pass and high-pass filters to
reduce noise and artifact signals from raw data.

● Signal Transformation: Converting digitized signals into user-readable formats,
such as waveforms for ECG and EEG data.

Example code snippet of data analysis

● Real-Time Processing: Prototype algorithms for displaying processed signals in
real-time on the GUI.

GUI implementation

These steps ensure that the raw biological signals captured by the sensors are accurately
cleaned, processed, and presented for analysis or educational purposes.

Integration and Next Steps

Our design uses a 16-1 multiplexer to control which sensor to read from. Each sensor is
powered using a 3.3V supply of power coming from the AD3 DAQ.

6.1 DESIGN ANALYSIS
What works well - The 16:1 multiplexer integration has been one of the best features we
have. It seamlessly works to switch between each sensor and works well the the custom
GUI we have made. All our sensors work well to collect and transfer data to the DAQ and
into the computer.

What does not work well - The signal processing is not the best for our project right now.
Our data is noisy at times, and the data does not look the cleanest. There is a decent
amount of variability and occasional distortion. This is because any movement with the
sensor can cause noise that is difficult to process.

High level system implementation

 Sensor hardware implementation

Wiring Chart

Node Wire description

1 V++ and GND

2 16-to-1 Mux inputs

3 V++ and GND extension

4 16-to-1 Inputs

5 SDA and SCL input lines for pulse oximeter

6 Select lines for 16-to-1 mux

7 Output of Mux to input of Analog Discovery 3

8 Our 4 sensor modules ECG, EMG, Pulse Oximeter, and Reaction Time

7 ETHICS AND PROFESSIONAL RESPONSIBILITY

In this section, we outline our approach to professional responsibility, focusing on
engineering ethics and professional conduct as defined by the IEEE Code of Ethics
and IEEE 1016-1998. Our project prioritizes maintainability, clarity, and ethical
considerations in software design and implementation, ensuring a robust system for data
analysis and presentation. These practices aim to uphold the principles of transparency,
sustainability, and user well-being.

Over the course of this project, our understanding of ethical responsibility has changed in
many meaningful ways. One of the big things is team dynamics and ethical culture.
Through the collaborative time we have together, we have seen the value in fostering a
good working environment where ethical concerns are openly discussed. Especially since
we are working with medical technology, this data is highly sensitive to each person.

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

Below is a table addressing the seven areas of professional responsibility, incorporating
primary goals stated from IEEE 1016-1998 to further development for software
documentation and maintainability:

Area of
Responsibility

Definition (in
our own words)

Relevant IEEE Code of
Ethics/1016-1998 Item

How Our Team
Adheres

Work
Competence

Deliver
high-quality,
maintainable
solutions.

“Maintain and improve
technical competence” (IEEE
Code of Ethics, Item 6);
Emphasize clarity and
maintainability in software
design (IEEE 1016-1998).

Implemented
structured design
documentation to
guide future
modifications.

Financial
Responsibility

Provide
cost-effective
solutions without
sacrificing quality.

“Avoid real or perceived
conflicts of interest” (Item
4).

Selected modular
components and
reusable code to
reduce overall costs.

Communication
Honesty

Report progress
and limitations
clearly and
transparently.

“Be honest and realistic in
stating claims” (Item 3).

Used IEEE 1016-1998
practices for
documenting software

functionality and
limitations.

Health, Safety,
Well-Being

Ensure the system
prioritizes user
safety and data
security.

“Hold paramount the safety,
health, and welfare of the
public” (Item 1).

Designed features to
safeguard sensitive
user data and ensure
accurate signal
processing.

Property
Ownership

Respect
intellectual
property and user
data ownership.

“Avoid injuring others, their
property, or reputation”
(Item 8).

Properly attributed
external libraries and
ensured user data
remains locally
controlled.

Sustainability Minimize
environmental
impact in design
and use.

“Strive to comply with
sustainable development
practices” (Item 10).

Used modular design
to reduce hardware
waste and
documentation
practices for efficient
updates.

Social
Responsibility

Enhance
educational tools
for broader
societal benefit.

“Enhance the quality of life
of humankind” (Item 1).

Developed software
aligned with
educational goals,
ensuring accessibility
and usability.

Performance Evaluation

Area of Strength:
Our team excels in Work Competence by strictly following the practices outlined in IEEE
1016-1998 for acceptable software documentation. This includes defined modules,
interpretable diagrams, and required comments in code to enhance maintainability and
encourage continuous development. Thus, the project can continue to develop and shape
into any required standard.

Area for Improvement:
We need to improve in Sustainability, due to the usage of software and hardware within
the project. While a modular design helps reduce waste, we plan to enhance this by

supplementing required components with eco-friendly alternatives and encouraging the
usage of energy-efficient programming practices.

7.2 FOUR PRINCIPLES

Area for Improvement - Environmental Beneficence: We don't prioritize sustainability
by selecting components that are energy efficient and low-cost. This reduces electronic
waste and encourages sustainable design practices. By doing this, we could help contribute
to responsible environmental solutions. To improve this area, we can look into selecting
components that are energy efficient or have multiple sensors in one.

Strength - Economic Respect for Autonomy: Our design is currently very cost-effective.
Each of the sensors can be interchanged with other sensors if necessary. If something is
too expensive then we can switch it out for a cheaper sensor. Our code is also open source,
so it is free to use.

Our team values the following virtues:

1. Honesty: Transparent reporting of limitations and results.
2. Responsibility: Adherence to ethical standards and user expectations.
3. Respect: Valuing all contributions and prioritizing user autonomy.

How we support these virtues as a team:

● Documented and communicated design limitations, accurately reported testing
data, and provided realistic performance expectations to stakeholders.

● Followed IEEE 1016-1998 guidelines, prioritized user safety with local data storage,
and incorporated feedback to align the design with user needs.

● Encouraged inclusive discussions, valued all contributions, and ensured user
autonomy by giving full control over their data.

Individual Reflection:

Sajan Patel:

● Virtue Demonstrated: Honesty
○ Why Important: Honesty builds trust among team members and our

client ensuring credibility and reliability in our project's outcomes.
○ Example: I transparently explained which open-source libraries I used for

my code.
● Virtue to Demonstrate: Trust

○ Why Important: Trust is important because it helps strengthen the bond
between teammates, helping with overall work quality.

○ Future Action: I will try to start trusting more so that we can function as a
well-oiled machine and become better friends in the future.

Daniel Karpov:

● Virtue Demonstrated: Courageous
○ Why Important: Courage is important because it means that risks are not

afraid to be taken. It is also a virtue that can allow for taking blame for
mistakes and acknowledging when you're wrong.

○ Example: Asking clarifying questions even if it means showing that you
might not understand a topic as much as other people.

● Virtue to Demonstrate: Clear and thorough documentation

○ Why Important: This is important because it allows for other members of
the team to understand what was being worked on and what was changed.
It gives more structure to the project and allows people working on it to be
more organized.

○ Future Action: In the future it is important to document everything new
that is added to the project and work hard in order to document even the
smallest changes.

Chuck Mallek:

● Virtue Demonstrated: Diligence

○ Why Important: Diligence is important because it highlights spending
time to complete menial tasks that can be otherwise procrastinated and
forgotten about. This reinforces my helpfulness and timeliness as a group
member.

○ Example: I always developed our lightning talks and design documents
before the due date instead of waiting till the last minute to work on them.

● Virtue to Demonstrate: Patience
○ Why Important: This is important because it allows others in my group to

work at their own pace, which would improve overall work quality.
○ Future Action: I will be more patient with my group members so that they

can turn in their best work without being rushed.

Tysung Beresford:

● Virtue Demonstrated: Hard Working
○ Why Important: This is important because it pushes the other team

members to increase their level to match.
○ Example: Wanted to stay longer to work on a part of the project and

everyone else ended up staying.
● Virtue to Demonstrate: Cooperative

○ Why Important: Cooperativeness is important because it allows for
collaboration between group members

○ Future Action: I will communicate with the team when I plan on working
on the projects

Jay Patel

● Virtue Demonstrated: Trust
○ Why Important: Trust is important because it allows me to trust other

members with their own work and not worry about holding them to their
word.

○ Example: I trust my other team members to do their part to split the work
equally between everyone.

● Virtue to Demonstrate: Leadership
○ Why Important: Leadership is important because it allows group

members to execute their roles in a plan.
○ Future Action: I will be more of a leader in the future and help lead others

by dividing work up evenly and laying out a plan for future goals.

8 CONCLUSIONS
8.1 SUMMARY OF PROGRESS

The CyVital project made significant progress toward creating an affordable and
user-friendly educational platform for biomedical engineering students. We have
developed a modular system– integrating a data acquisition unit, physiological sensors and
a Python-based graphical user interface for real-time data visualization and analysis. Key
accomplishments include successful ECG sensor testing, initial signal processing and
iterative testing of system components. Constraints such as hardware limitations, time and
resource restrictions have posed challenges, particularly with the transition between older
hardware into the newer hardware (Analog Discovery 3). While the project remains as a
successful accomplishment, it still retains a strong potential for improvement and
numerous features.

8.2 VALUE PROVIDED

CyVital delivers significant value by addressing the core challenges of affordability,
accessibility, and educational effectiveness in biomedical instrumentation education.

User Needs Addressed

1. Biomedical Engineering Students
○ Hands-On Learning: CyVital’s modular sensors (ECG, EMG, Pulse

Oximeter) and Python-based GUI enable students to interact with
real-world biomedical signals.

○ Reduced Complexity: The GUI’s intuitive design minimizes need prior
knowledge compared to other software

2. Lab Teaching Assistants (TAs)
○ Streamlined Instruction: All modules are pre-built under our “simple” policy
○ Scalability: The multiplexer supports up to 16 sensors

3. Course Professors
○ Curriculum Alignment: CyVital’s open-source codebase allows students to

continue working
○ Cost Savings: Significantly cheaper

Problem Resolution

CyVital directly tackles the limitations of outdated, expensive tools:

● Affordability: Use default brand to save money
● Modernization: The Python GUI replaces legacy applications
● Signal Integrity: Digital filtering to reduce issues
● Scalability: The 16:1 multiplexer and modular design allow seamless integration of

new sensors

Broader Context

1. Public Health & Safety
○ CyVital equips students with practical skills to develop medical devices

2. Economic Impact
○ Low-cost access to biomedical instrumentation allows all backgrounds to

have hands-on experience
3. Sustainability

○ Modular components extend the system’s lifespan
4. Educational Innovation

○ CyVital’s open-source framework encourages collaboration.

8.3 NEXT STEPS

1. Advanced Signal Processing

● Machine Learning for Noise Reduction: Implement data models to smooth
waveforms at a more consistent rate

● Automated Diagnostics: Develop algorithms immediately find issues

Importance: Enhances educational value

2. Expanded Sensor Diversity

● Additional Sensors: Integrate EEG and other similar sensors
● Wireless Connectivity: Replace USB with Bluetooth/Wi-Fi modules to remove

issues of wiring

Importance: Diversifies lab modules fosters stronger levels of knowledge

3. Enhanced Features

● Cloud-Based Collaboration: Create a platform for students to upload, share, and
compare datasets

● Virtual Labs: Develop remote access for students who are unable to attend in
person

Importance: Promotes collaborative learning

4. Hardware Optimization

● Custom PCB Design: Consolidate all components into a single-do all box
● Low-Power Modes: Implement energy-efficient components

Importance: Reduces carbon footprint and energy costs

5. Development

● Open-Source Ecosystem: Allow students to access code and change sensor data
● Curriculum Integration: Collaborate with universities

Importance: Supports community driven support

9 REFERENCES

1. Analog Devices. Single-Lead, Heart Rate Monitor Front End Data Sheet AD8232.
Norwood, MA:Analog
Devices,2013.[Online].Available:https://www.analog.com/media/en/technical-docu
mentation/data-sheets/AD8232.pdf

2. Measurement Computing. USB-1608G Series Multifunction DAQ Devices User’s
Guide. Norton, MA: Measurement Computing, 2012. [Online]. Available:
https://www.mccdaq.com/pdfs/manuals/USB-1608G-Series.pdf

3. IEEE Standards Association, "IEEE Standard 1012-2016: System and Software
Verification and Validation," IEEE Xplore, 2016. [Online]. Available:
https://ieeexplore.ieee.org/document/1012-2016

4. Restackio, "Ieee Software Coding Standards," 2024. [Online]. Available:
https://www.restack.io/ieee-software-coding-standards

5. Matplotlib Development Team, API Reference: Version 3.9.3. [Online]. Available:
https://matplotlib.org/stable/api/index.html. Accessed: Dec. 7, 2024

6. PIA Group, BioSPPy: Biomedical Signal Processing in Python. [Online]. Available:
https://github.com/PIA-Group/BioSPPy. Accessed: Dec. 7, 2024

10 APPENDICES
APPENDIX 1 – OPERATION MANUAL

Overview

https://www.mccdaq.com/pdfs/manuals/USB-1608G-Series.pdf
https://ieeexplore.ieee.org/document/1012-2016
https://ieeexplore.ieee.org/document/1012-2016
https://www.restack.io/ieee-software-coding-standards
https://matplotlib.org/stable/api/index.html
https://matplotlib.org/stable/api/index.html
https://github.com/PIA-Group/BioSPPy
https://github.com/PIA-Group/BioSPPy

CyVital GUI is an application built using the imgui_bundle framework. It provides an
interface for visualizing sensor data, logging user interaction, and offering a responsive UI
with dockable windows.

Main Features

1.Navigation Sidebar

● Located on the left panel

● Provides buttons to switch between views:

○ ECG

○ Blood O2

○ EMG

Clicking any button updates the main content area with the corresponding sensor
interface.

Views Description

2. ECG View

● Displays:

○ A Counter slider to set a value between 0 - 100

○ A Reset Counter button to set the counter back to 0
○ During runtime, ECG function will plot peaks and implement student

designed algorithms to calculate heart rate.

3. Blood O2 View

● Displays:

○ Display level indicator plot for blood O2 levels.

4. EMG View

● Displays:

○ Counter value (as set in ECG view)

○ Input text (as entered in Blood O2 view)

● Every time the EMG view is opened, the current input text is logged

5. Logs Panel

● Located at the bottom of the screen

● Logs messages with timestamps

● Automatically displays the input text used in the EMG view

● Keeps the latest 1000 entries (older ones are discarded to manage memory)

6. Window Settings

● Title: CyVital GUI

● Window Size: 800 x 600

● Menu Bar: Minimal interface

How to Run

1. Ensure dependencies are installed:
 imgui_bundle, typing, datetime

2. Run the script using Python:
a. Ex: python Main.py

APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN

● During the development of the CyVital project, our team had multiple shifts in
scope, design, hardware, and development of our project. Initially, we developed
the project based on MCC hardware, which was later discovered to be incompatible
with multiple objectives we had established, such as concurrent data analysis and
sampling. After discussion, our team decided to move platforms to the Analog
Digital 2 acquisition device, which improved compatibility with our sensors and
provided much better sampling rate controls. A third hardware change was
implemented to move from the AD2 to the Analog Discovery 3 data acquisition
unit. This final change was implemented to add native USB C support and allow for
future development of the platform using up to date hardware. For software
development, we tested and prototyped multiple libraries for the GUI. Initially we
tested multiple python libraries such as PyGUI, and TKinter. After testing, the team
decided on the IMGUI python library, which offered the best control of frame rates
and was easiest to implement based on our configuration.

APPENDIX 3 – OTHER CONSIDERATIONS
● N/A

APPENDIX 4 – CODE
● lil-skies/CyVitals: CyVitals is dedicated to providing modular hardware in the form

of sensors and its corresponding software counterpart to read, analyze and display
data seen within physiological sensors.

APPENDIX 5 – TEAM CONTRACT
Team Members

● Daniel Karpov - Software Engineer
● Jay Patel - Software Engineer
● Ty Beresford - Software Engineer
● Sajan Patel - Software Engineer
● Chuck Mallek - Computer Engineer

Required Skill Sets for Your Project

● Data Acquisition and Signal Processing
- Retrieve and process data from physiological sensors like heart rate, EEG,

and EMG.
● Embedded Systems Programming

- Develop software to control hardware and process real-time sensor data.
● Signal Interpretation and Analysis

- Analyze physiological signals to teach students how to extract meaningful
insights.

● Hardware-Software Integration

https://github.com/lil-skies/CyVitals/tree/main
https://github.com/lil-skies/CyVitals/tree/main
https://github.com/lil-skies/CyVitals/tree/main

- Ensure seamless functioning of all sensors within a unified system.
● User-Centric Design for Education

- Create an intuitive platform for students with varying technical expertise.
● Biomedical Engineering Fundamentals

- Relate sensor operations to real-world healthcare applications.
● Team Collaboration

- Coordinate development and share progress among team members.
● Testing and Validation

- Ensure the system's safety, accuracy, and usability for educational purposes.
● Machine Learning

- Expand future capabilities for real-time signal pattern detection and
analysis

Skill Sets covered by the Team

● Daniel Karpov
○ Data Acquisition and Signal Processing
○ Signal Interpretation and Analysis
○ User-Centric Design for Education
○ Testing and Validation
○ Team Collaboration

● Jay Patel

○ Data Acquisition and Signal Processing
○ Team Collaboration
○ User-Centric Design for Education
○ Signal Interpretation and Analysis

● Ty Beresford

○ Embedded Systems Programming
○ Testing and Validation
○ Hardware-Software Integration

● Sajan Patel

○ Embedded Systems Programming
○ Testing and Validation
○ Hardware-Software Integration

● Chuck Mallek

○ Signal Interpretation and Analysis
○ User-Centric Design for Education
○ Hardware-Software Integration

Project Management Style Adopted by the team

The team used an agile approach where we would set weekly goals and then work towards
them before we moved onto the next goals. This allows us to have an iterative approach
towards the project making it more manageable.

Individual Project Management Roles

● Daniel Karpov - Data Processing
● Jay Patel - Data Processing
● Ty Beresford - Full stack Software
● Sajan Patel - Full Stack Software
● Chuck Mallek - Physical and Electrical Design

Team Contract

Team Members:

1. Ty Beresford
2. Sajan Patel
3. Jay Patel
4. Daniel Karpov
5. Chuck Mallek

Team Procedures

1) Day, time, and location (face-to-face or virtual) for regular team meetings:
a) Three days a week during regular class hours in person; additional virtual

meetings via Discord on an as-needed basis.
2) Preferred method of communication updates, reminders, issues, and scheduling:

a) Primary: Discord group chat and calls.
b) Secondary: Google Drive for documentation, phone numbers for backup

communication.
3) Decision-making policy:

a) Consensus vote, with majority vote as a fallback.
4) Procedures for record keeping:

a) Each team member is responsible for recording their contributions.
Records to be shared via Google Drive.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team
meetings:

a. Attendance and active participation are mandatory.
2. Expected level of responsibility for fulfilling team assignments, timelines, and

deadlines:
a. Complete assigned tasks promptly and communicate any delays proactively.

3. Expected level of communication with other team members:
a. Maintain open communication and respond promptly to messages.

4. Expected level of commitment to team decisions and tasks:
a. Fully commit to team decisions and tasks.

Leadership

1. Leadership roles for each team member:
a. Ty Beresford: GUI Development
b. Sajan Patel: Full Stack Lead
c. Jay Patel: Backend and Data Analysis
d. Daniel Karpov: Backend and Data Analysis
e. Chuck Mallek: Physical Systems Integration

2. Strategies for supporting and guiding the work of all team members:
a. Regular meetings for updates and problem-solving; proactive

communication to assist where needed.
3. Strategies for recognizing the contributions of all team members:

a. Acknowledge contributions during meetings and ensure equal credit in
project milestones.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to
the team:

a. Daniel Karpov - Data Processing
b. Jay Patel - Data Processing
c. Ty Beresford - Full Stack Software
d. Sajan Patel - Full Stack Software
e. Chuck Mallek - Physical and Electrical Design

2. Strategies for encouraging and supporting contributions and ideas from all team
members:

a. Open discussion during meetings; equal opportunity to propose ideas.
3. Procedures for identifying and resolving collaboration or inclusion issues:

a. Discuss concerns in team meetings, escalate unresolved issues to the
professor if necessary.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
a. Develop a high-quality application with a functional GUI for recording,

analyzing, and storing sensor data.
2. Strategies for planning and assigning individual and team work:

a. Weekly meetings to set expectations and assign tasks; roles adjusted based
on project needs.

3. Strategies for keeping on task:
a. Regular check-ins during meetings; track progress via Discord and Google

Drive.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?
○ First offense: Issue an email/text with a description of the infraction and

corrective action needed.
2. What will your team do if the infractions continue?

○ Second offense: Notify the professor via email/text.
○ Third offense: Schedule an in-person meeting with the offender and the

professor to resolve the issue. If unresolved, consider removal from the
team.

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract

1) Daniel Karpov - September 18th 2024
2) Ty Beresford- September 18th 2024
3) Sajan Patel- September 18th 2024
4) Chuck Mallek- September 18th 2024
5) Jay Patel - September 18th 2024

	CyVital Final Design Document
	SD-May25 Group 22
	Sajan Patel, Jay Patel, Chuck Mallek, Ty Beresford, Daniel Karpov
	
	
	Executive Summary
	Learning Summary
	DEVELOPMENT STANDARDS & PRACTICES USED
	SUMMARY OF REQUIREMENTS
	APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM
	NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES
	TABLE OF CONTENTS

	1.INTRODUCTION
	1.1 PROBLEM STATEMENT
	1.2 INTENDED USERS

	2. REQUIREMENTS, CONSTRAINTS, AND STANDARDS
	2.1 REQUIREMENTS & CONSTRAINTS
	2.2 ENGINEERING STANDARDS

	3. PROJECT PLAN
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4 PROJECT TIMELINE/SCHEDULE
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	
	3.6 PERSONNEL EFFORT REQUIREMENTS
	

	4 DESIGN
	4.1 DESIGN CONTEXT
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	
	
	
	
	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	
	4.3 FINAL DESIGN
	4.3.1 Overview
	4.3.2 Detailed Design and Visual(s)
	4.3.3 Functionality
	4.3.4 Areas of Challenge

	
	4.4 TECHNOLOGY CONSIDERATIONS

	5 TESTING
	5.1 UNIT TESTING
	5.2 INTERFACE TESTING
	5.3 INTEGRATION TESTING
	5.4 SYSTEM TESTING
	5.5 REGRESSION TESTING
	5.6 ACCEPTANCE TESTING
	5.7 USER TESTING
	5.8 RESULTS

	6 IMPLEMENTATION
	6.1 DESIGN ANALYSIS

	7 ETHICS AND PROFESSIONAL RESPONSIBILITY
	7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.2 FOUR PRINCIPLES
	

	8 CONCLUSIONS
	8.1 SUMMARY OF PROGRESS
	8.2 VALUE PROVIDED
	8.3 NEXT STEPS

	9 REFERENCES
	10 APPENDICES
	APPENDIX 1 – OPERATION MANUAL
	APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN
	APPENDIX 3 – OTHER CONSIDERATIONS
	APPENDIX 4 – CODE
	APPENDIX 5 – TEAM CONTRACT

